EMBEDDED SYSTEMS PROJECT

Distance Indicator

Jordi Gutierrez Ignacio Salan

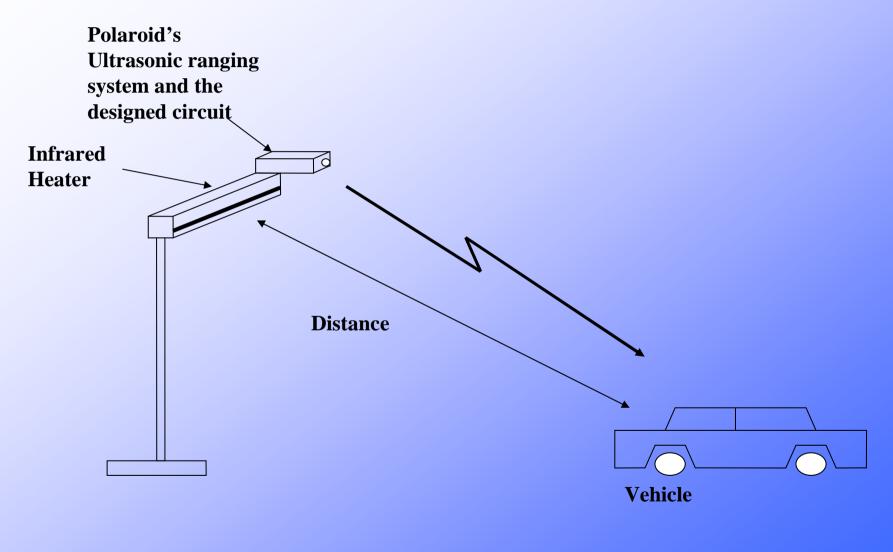
Embedded System Project

1

CONTENTS OF THE PRESENTATION

- Introduction
- Aim of the Project
- Technical Details of the Project
- Simulation and experimental Results
- Conclusions

Introduction


This project is concerned with the design of an electronic circuit with a microcontroller for an application of TRISK. This is a local company based in Sunderland. They are world leaders in the design and manufacture of mobile and drive-in infrared paint curing equipment for the automotive industry.

They are currently replacing much of the old control electronics and mechanical timers and switches in their equipment with PIC microcontrollers. An enhancement to their equipment that is currently under consideration is the inclusion of a distance indicator. The distance from the infrared heater to the vehicle is critical for optimum performance.

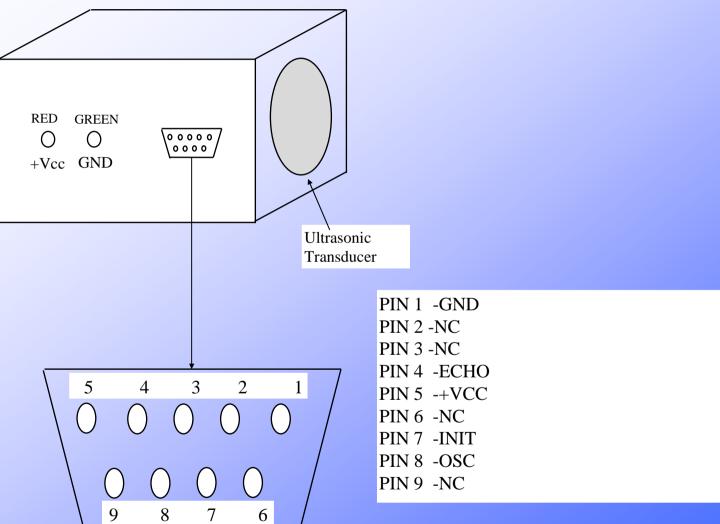
Aim of the Project

The main aim of this project is to implement a device to control the Polaroid's ultrasonic ranging system. This device must be able to control the ultrasonic system sending to it the proper control signals and then displaying the results of the distance measurement.

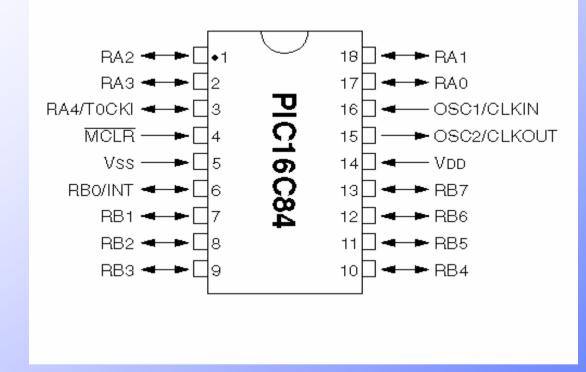
The approximate diagram of the TRISK Company system with the designed circuit proposed in this project.

• Three LED's to indicate the user the distance to the object.

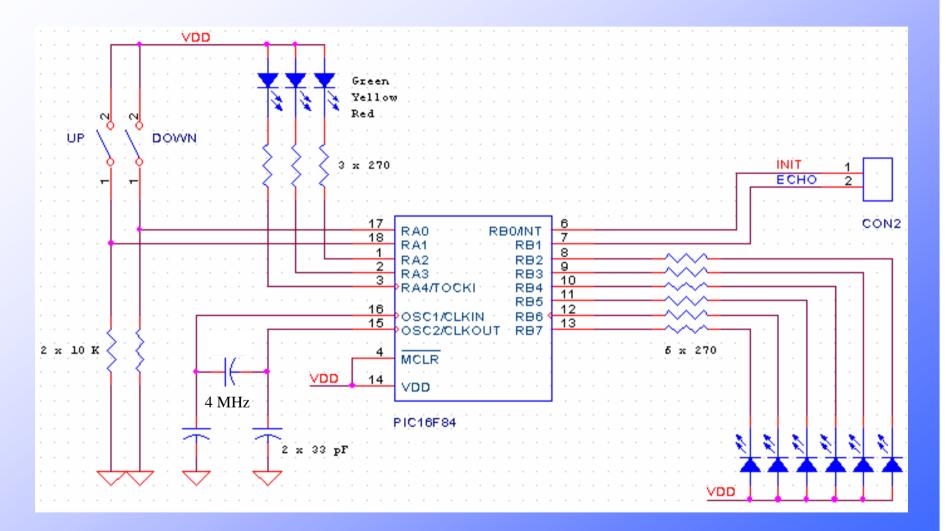
RED to indicate 'too close' AMBER to indicate 'near green' GREEN to indicate 'in range'

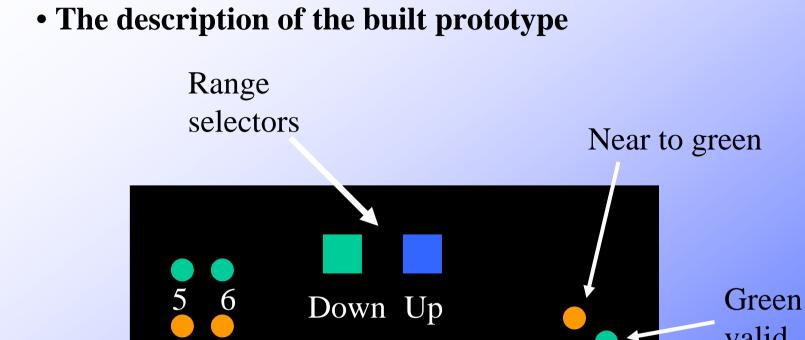

RED	AMBER	GREEN	AMBER	NO SIGNAL
Too close	Near to green	Correct distance	Near to green	Too far

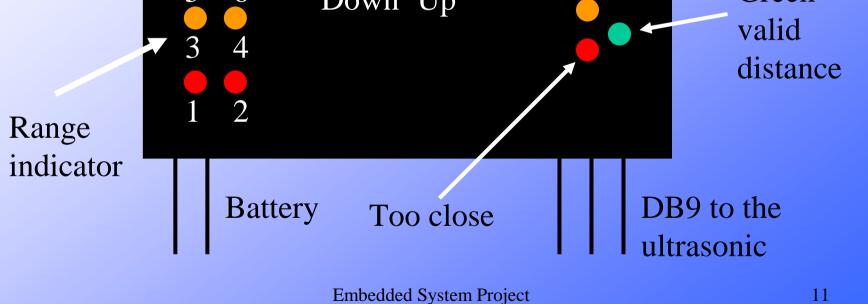
These are the different ranges that have been determined attending to the specifications of the project. The following table has been calculated taken the whole range of the green window and dividing it by six levels. Giving a margin of amber of 50 mm at both sides of each green level.


	yellow 2	green 2	green 1	yellow 1
	625	575	500	450
	742	692	617	567
• Main windov	860 🔶	810	735	685
	1023	973	898	848
	1186	1136	1061	1011
	1350	1300	1225	1175

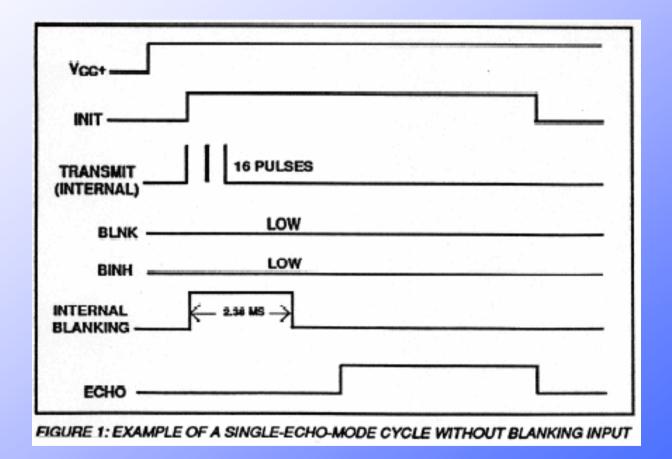
Technical Details of the Project


• The Sensor (Polaroid's ultrasonic sensor)




• The Microcontroller

Circuit designed for this Application



• The program

The program basically has to deal with the signals coming from the ultrasonic ranging unit and process them.

The structure of the program can be resume in three different parts:

1. General loop.

- Variable declarations
- Configuration of input/output ports
- Configuration of interrupts
- Variables definitions
- Main loop

2. ECHO signal reception.

This piece of software code is executed through a routine, when a signal is received in pin PB0. It makes the following functions:

- Capture the actual timer value
 Check the time against the limits
 Turn on the LED depending upon the distance measured

3. Timer 0

Timer 0 interrupt will only be produced if there is no vehicle or if it is out of range. Just two simple actions are performed by this function:

- Turn off the distance LED's .
 Control next measure .

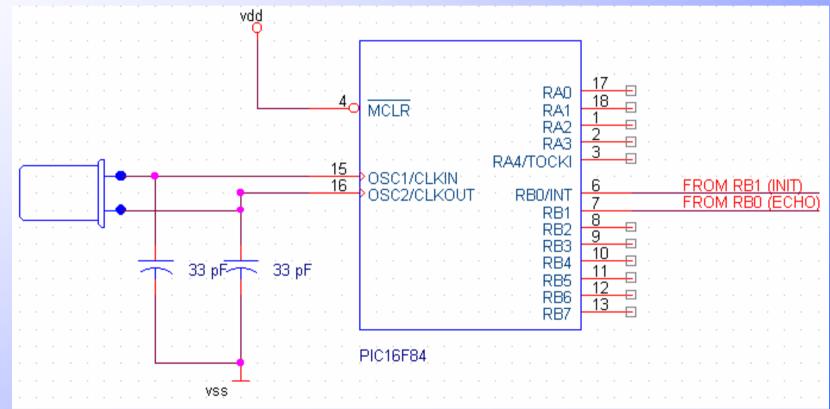
4. Other routines

There are several routines not commented in the other sections which performs different operations in the program :

- Limits
- Rangeup-Rangedo
- Delay (delay of 15 ms)
- *Del100* (delay of 100 ms) *Wat100* (delay of 100 ms)

• The Cost of this project

COMPONENT	PRICE	QUANTITY	TOTAL
PIC16F84A	£3.39	1	£3.39
L78M05CV	£0.41	1	£0.41
LED's (red)	£0.07	7	£0.49
LED's (amber)	£0.07	1	£0.07
LED's (green)	£0.07	1	£0.07
Crystal 4 Mhz	£0.41	1	£0.41
Resistance (270)	£0.01	9	£0.09
Resistance (10 K)	£0.01	2	£0.02
Capacitor (33 pF)	£0.05	2	£0.10
Push switches	£0.41	2	£0.82
Battery connector	£0.41	1	£0.41
9-Way connector (male)	£0.50	1	£0.50
Socket (18 pins)	£0.16	1	£0.16
Copper-clad board	£1.26	1	£1.26
Box	£1.69	1	£1.69
TOTAL			£9.89


Simulation and experimental Results

• The software simulation

<u>File P</u> roject	<u>E</u> dit <u>D</u> ebu		lus <u>O</u> ptions	s <u>T</u> ools <u>W</u> indow <u>H</u> e	·					- 8
	emb\emb.							_		
	les init						📓 EMB Address	Symbol	Value	
	clrf bsf	cont flag, 1	;	send INIT sign	al		0C 0D 1 0	level leds ye1	D'2 ' B'00010000' D'124'	
; interr	upts act	ivation					11 12	gr1 gr2	D'134' D'147'	
	bsf	INTCON, GI	E				13 17 19	ye2 time cont	D'156' D'1 ' D'1 '	
	clrwdt btfsc aoto	PORTA, 1 lev up	;	check pusher U	IP		05 06	PORTA Portb	B'00011100' B'11111100'	
	Ďtfsc goto	PORTA, 0 lev_dow		check pusher D			01 18 0E	TMRØ Flag tmp1	D'83 ' B'00000001' B'00000000'	
	btfsc goto	flag, 1 send	;	check send-INI	T flag		2 0 0 0E	w . tmp1	H'06' D'0 '	
	goto	init	;	go to beginnin	g		0F	tmp2	D.0 .	┍
lev_up:	call btfss	delay PORTA, 1	;	check if the k a little time			Stopwate	:h		<u>،،،</u> د
	goto	init	-	if it is not p			Zero	Cycle	es 208	3902
	incf call goto	level, f rangup adjust		change to uppe adjust rang	r rang		Processor	Tim Frequenc		
	call btfss	delay PORTA, Ø	;	check if the k a little time	ey is really p		<u>∠</u> [ear 0)n Reset <u>C</u> lose	<u>H</u> elp	
• 120 Col 1	406	WB No.W	/rap INS P	1C16F84 pc:0x3c	▶ w:0x06 z dc c	J // L Bk Or	Sim 4 MHz	Proi		_
),			dded.doc - Microsoft	, ,		_	,, , , ,	Q 🕅	12:2

• The hardware simulation

1. Test circuit. Circuit simulating the functions of the ultrasonic connected to the prototype built.

2. Physical results with the ultrasonic and the prototype.

The following values were measured for the three first ranges levels including the main green window, all the values are in mm:

yellow 1	green 1	green 2	yellow 2
435	485	555	610
550	600	675	725
665	720	790	860

They can be compared with the theoretical values the range levels:

yellow 1	green 1	green 2	yellow 2	
450	500	575	625	
567	617	692	742	
685	735	810	860	► Main window
848	898	973	1023	
1011	1061	1136	1186	
1175	1225	1300	1350	

Conclusions

In measuring the distances, some differences were detected between the calculated values and the measured values due to the construction of the sensor, since the sensor is not built up exactly at the end of the container. These measures were corrected during the test, achieving again the desired accuracy.

As possible improvements, it could be possible to use another microcontroller, as the P16F876, and implement more ranges using CAD's and potentiometers, and realise the measure using the counter implemented in this microcontroller.